Rev 9.0, 02/2003

Distributed System Interface (DSI) Sensor Interface

The 33793 is a slave Distributed System Interface (DSI) device that is optimized as a sensor interface. The device contains circuits to power sensors such as accelerometers and to digitize the analog level from the sensor. The device is controlled by commands over the DSI bus and returns measured data over the bus.

Features

- 4-Channel, 8-Bit Analog-to-Digital Converter (ADC)
- 4 Pins Configurable as Analog or Logic Inputs or as Logic Outputs
- Provides Regulated +5.0 V Output for Sensor Power from Bus •
- Additional High-Drive Logic Output
- Undervoltage Fault Detection and Signaling
- On-Board Clock (No External Elements Required)
- · Field-Programmable Address
- Default and Field-Programmable as a DSI Daisy Chain Device
- Recognizes Reverse Initialization for Open Bus Fault Tolerance ٠
- Detects Short to Battery on Bus Switch and Prevents Its Closure

ORDERING INFORMATION

Device	Range (T _A)	Package
MC33793D/R2	-40 to 125°C	16 SOIC

SUNSTAR自动化 http://www.sensor-ic.com/ TEL: 0755-83376489 FAX:0 200163.cdigitaldna

33793

DISTRIBUTED SYSTEM

INTERFACE (DSI) SENSOR

INTERFACE

Figure 1. 33793 Simplified Block Diagram

BUSRTN 🕮	1 •	¹⁶ DBUSOUT
I/O0 🞞	2	15 NC
AGND 🞞	3	14 🞞 BUSIN
I/01 🞞	4	13 🞞 NC
AGND 🞞	5	¹² H_CAP
I/O3 🗔	6	11 E REGOUT
NC 💷	7	10 - NC
I/O2 🗆	8	9 📥 LOGOUT

PIN FUNCTION DESCRIPTION

Pin	Pin Name	Description
1	BUSRTN	This pin provides the common return for power and signalling.
2	I/O0	This pin can be used to provide a logic level output, a logic input, or an analog-to-digital (A/D) input.
3, 5	AGND	This pin is the low reference level and power return for the analog-to-digital converter (ADC).
4	I/O1	This pin can be used to provide a logic level output, a logic input, or an A/D input.
6	I/O3	This pin can be used to provide a logic level output, a logic input, or an A/D input.
7, 10, 13, 15	NC	These pins have no internal connections.
8	I/O2	This pin can be used to provide a logic level output, a logic input, or an A/D input.
9	LOGOUT	This is a logic output with higher pull-up drive capability than the standard logic I/O.
11	REGOUT	This pin provides a regulated 5.0 V output. The power is derived from the bus.
12	H_CAP	A capacitor attached to this pin is charged by the bus during bus idle and supplies current to run the device and for external devices via the REGOUT pin during non-idle periods.
14	BUSIN	This pin attaches to the bus and responds to initialization commands.
16	BUSOUT	This pin attaches to the bus and responds to reverse initialization commands.

MAXIMUM RATINGS

All voltages are with respect to ground unless otherwise noted.

Parameter	Symbol	Value	Unit
I/O Pin Voltage	V _{IO}	-0.3 to V _{REGOUT} + 0.5	V
I/O Pin Current	I _{IO}	5.0	mA
BUSIN, BUSOUT, BUSRTN, and H_CAP Voltage	V _{IN}	-0.3 to 40	V
BUSIN, BUSOUT, BUSRTN, and H_CAP Current (continuous)	I _{IN}	250	mA
Storage Temperature	Τ _S	-55 to 150	°C
Operating Junction Temperature	TJ	-40 to 125	°C
Lead Temperature (Soldering 10 Sec)	TL	260	°C
Thermal Resistance	θ_{JC}	150	°C/W
ESD Protection			kV
Human Body Model (Note 1)	V _{ESD1}	±2.0	
Machine Model (Note 2)	V _{ESD2}	±0.2	

Notes

1. ESD1 performed in accordance with the Human Body Model (C_{ZAP} = 100 pF, R_{ZAP} = 1500 Ω).

2. ESD2 performed in accordance with the Machine Model (C_{ZAP} = 200 pF, R_{ZAP} = 0 Ω).

STATIC ELECTRICAL CHARACTERISTICS

Characteristics noted under conditions -0.3 V \leq V_{BUSIN} or V_{BUSOUT} \leq 30 V, 5.5 V \leq V_{H_CAP} \leq 30 V, -40°C \leq T_J \leq 150°C.

Parameter	Symbol	Min	Nom	Мах	Units
Internal Quiescent Current Drain V _{H CAP} = 25 V, Logout = 0, I/O = Input	Ι _Q	_	_	3.0	mA
BUSIN or BUSOUT to H_CAP Rectifier Voltage Drop I _{BUSIN} /I _{BUSOUT} = 15 mA I _{BUSIN} /I _{BUSOUT} = 100 mA	V _{RECT}	-	0.75 0.9	1.00 1.2	V
BUSIN + BUSOUT Bias Current $V_{BUSIN} / V_{BUSOUT} = 8.0 V, V_{H_CAP} = 9.0 V$ $V_{BUSIN} / V_{BUSOUT} = 0.5 V, V_{H_CAP} = 25 V$	I _{BIAS}	-100 —		100 20	μΑ
Rectifier Leakage Current V _{BUSIN} /V _{BUSOUT} = 5.0 V, V _{H_CAP} = 25 V	I _{RLKG}	-20	_	100	μΑ
Reg0ut 5.5 V \geq V _{H_CAP} \geq 25 V, I _{RO} = 6.0 mA	V _{REG}	4.75	5.0	5.25	V
RegOut Line Regulation $I_{RO} = 6.0 \text{ mA}, 5.5 \text{ V} \ge V_{H_{CAP}} \ge 25 \text{ V}$	VR _{LINE}	_	71	180	mV
RegOut Load Regulation $I_{RO} = 0$ to 6.0 mA, 5.5 V \ge V _{H_CAP} \ge 25 V	VR _{LD}	_	2.3	20	mV
Undervoltage Lockout Proportional to unloaded V _{REGOUT}	V _{UVL}	0.93	0.95	0.97	V _{RO}
Bus Switch Resistance V _{BI} = 8.0 V, I _{BO} = -80 mA (Bus Switch Active)	R _{SW}	_	4.0	8.0	Ω
I/O0 and I/O3 Pull-Down Current 0 < V _(in) < 1.0 V	I _{PD}	7.0	11	13	μΑ
I/O1 and I/O2 Pull-Up Current V _{RO} < V _(in) < V _{RO} - 1.0 V	I _{PU}	-7.0	-11	-13	μΑ
BUSIN and BUSOUT Logic Thresholds Low High	V _{THL} V _{THH}	2.8 5.5	3.0 6.0	3.2 6.5	V
Logic Duty Cycle (assured by design) Logic 0 Logic 1	D _{CL} D _{CH}	10 60	33 67	40 90	%
BUSIN + BUSOUT Response Current V _{BUSIN} and/or V _{BUSOUT} = 4.0 V	I _{RSP}	9.9	11	12.1	mA
ADC Code Conversion Error (INL)	ADC _{INL}	-	-	< 1.0	LSB
ADC Full-scale Error	ADC _{FS}	_	-	3	counts
I/O Logic Input Thresholds Logic High Logic Low	V _{IH} V _{IL}	0.7	0.54 0.51	- 0.3	V _{RO}

STATIC ELECTRICAL CHARACTERISTICS (continued)

Characteristics noted under conditions -0.3 V \leq V_{BUSIN} or V_{BUSOUT} \leq 30 V, 5.5 V \leq V_H _{CAP} \leq 30 V, -40°C \leq T_J \leq 150°C.

		_			
Parameter	Symbol	Min	Nom	Max	Units
I/O Logic Output Levels					
Output Low ($I_L = 1.0 \text{ mA}$)	V _{OL}	0	0.08	0.5	V
Output High (I _L = -500 μ A)	V _{OH}	0.8	0.985	1.0	V _{RO}
LOGOUT Output Levels					V
Output Low ($I_L = 500 \ \mu A$)	V _{LOL}	0	0.2	0.5	
Output High (I _L = -10 mA, 6.2 V \leq V _{H CAP} \leq 25 V)	V _{LOH1}	4.7	5.0	5.3	
Output High (I _L = -100 μ A, 6.2 V \leq V _{H_CAP} \leq 25 V)	V _{LOH2}	-	-	V _{RO} +0.5	
Programming Time	T _{PROG}				ms
From positive edge of BUSIN/BUSOUT \ge V _{THH} on program command to following command negedge \le V _{THH}		100	200	1000	
NVM BUSIN/BUSOUT Programming Voltage	NVM _{VP}	22.25	-	30	V

DYNAMIC ELECTRICAL CHARACTERISTICS

 $Characteristics \ noted \ under \ conditions \ -0.3 \ V \leq V_{BUSIN} \ or \ V_{BUSOUT} \leq 30 \ V, \ 5.5 \ V \leq V_{H_CAP} \leq 30 \ V, \ -40^{\circ}C \leq T_J \leq 150^{\circ}C.$

Characteristic	Symbol	Min	Тур	Max	Unit
Initialization to Bus Switch Closing	t _{BS}	100	150	200	μs
Communication Data Rate	D _{RATE}	5.0	_	150	kbps
Loss of Signal Reset Time Maximum time below frame threshold	t _{TO}	_	_	100	ms
ADC Code Conversion Time (Go, No-Go Test)	t _{ADC}	-	-	27	μS
BUSIN and BUSOUT Response Current Transition Time 1.0 mA to 9.0 mA transition, 9.0 mA to 1.0 mA	t _{ITR}	_	7.0	10	mA/μs
BUSIN/BUSIN Timing to Response Current BUSIN/BUSOUT negative voltage transition = 3.0 V to I _{RSP} = 7.0 mA	t _{RSP}	_	_	4.5	μs

Figure 3. Response Current Timing

SYSTEM/APPLICATION INFORMATION

INTRODUCTION

The 33793 is designed to be used with a sensor at a location that is remote from a centralized MCU. This device provides power, measurement, and communications between the remote sensor and the centralized MCU over a DSI bus. Sensors such as accelerometers can be powered from the regulated output of the device, and the resulting analog value from the sensor can be converted from an analog level to a digital value for transmission over the DSI bus in response to a query from the MCU. Four I/O lines can be configured by the central MCU over the DSI bus as analog inputs, digital inputs, or digital outputs. This allows more than one sensor to be remotely controlled and measured by a single 33793. Additionally, a high drive logic output is provided that can be used to power other low-power sensors.

Power is passed from BUSIN or BUSOUT through on-board rectifiers to a storage capacitor (referred to as the H_CAP). The H_CAP stores energy during the highest voltage excursions of the BUSIN or BUSOUT pin (idle) and supplies energy to power the device during low excursions of BUSIN and BUSOUT.

The Regulator supplies an on-board regulated voltage for internal use, and the Power on Reset (POR) circuit provides a reset signal during low-voltage conditions and during power up/ down. Some current is available for low-power sensors.

Data from the Central Control Unit (CCU) is applied to the BUSIN and/or BUSOUT pins as voltage levels that are sensed by the Level Detection circuitry. The Serial Decoder detects these transitions and decodes the incoming data. The Control Logic provides overall control of the 33793. It controls diagnostic testing and formats responses to commands with the message encoder. Responses are formed via a switched current source that is slew-rate controlled.

The one-time programmable (OTP) memory array provides the nonvolatile storage for the pre-programmed address. It is accessed via the Read/Write NVM command. It has a built-in hardware lock that only allows one write.

FUNCTIONAL DESCRIPTION

Block Diagram Components

Refer to Figure 1, 33793 Internal Block Diagram, page 2, for a simplified representation of the 33793.

Rectifier

This rectifier or switch peak detects the bus signal into an external capacitor attached to H_CAP. The capacitor supplies power during signaling while the input voltage is at a lower level.

The voltage waveform at BUSIN and/or BUSOUT and the size of the filter capacitor at H_CAP must be such that the voltage at H_CAP will not drop below the frame threshold during signaling.

POR

The 33793 leaves the reset state when the voltage on H_CAP rises above the Power-on Reset threshold.

Timeout

A timeout timer keeps track of the length of the time when the input is not in idle mode. If this time exceeds a limit, the part is reset. The purpose of this is to allow the part to reset itself if the connection to the master is lost or if power is removed from the system.

5.0 Volt Regulator

The 5.0 V regulator supplies internal power for the device and also provides approximately 6.0 mA through the REGOUT pin to power an external sensor.

Undervoltage Detector

The undervoltage detector monitors the output voltage of the 5.0 V regulator. If the REGOUT voltage drops too low for accurate A/D operation, a signal is sent to the control logic. The control logic will interpret this signal and, in response to a command, report a status indicating an undervoltage condition to have existed. When received, the command will clear the signal after having read the status. If the voltage is too low when the A/D conversion was completed, the returned value will be zero (binary 0000000).

IO Pins 0 to 3

The IO pins can serve as logic inputs, logic outputs, or analog inputs. At power-up or after a clear, the pins are all logic inputs and can be used to measure an analog level value for an analog value request command. The pins can be individually configured as logic inputs or outputs by the IO Control command. If the pin is configured as a logic output, reading the analog value will return the analog level the output is being driven to.

Analog-to-Digital Converter

The ADC is an 8-bit successive approximation type using onboard capacitive division. It uses the Clk signal from the onboard oscillator for sequencing.

The ADC uses REGOUT as a full-scale reference voltage and ground AGND for a zero-level reference.

The ADC signals when it has made a valid conversion by asserting a signal to the controller. If this signal is not asserted

when a value is being captured by the controller, the controller will signal that an invalid A/D value was obtained.

The value of "0" (binary 0000000) is reserved by the control logic to signal an error. A value of "0" from the ADC will be reported as "1" (binary 00000001) by the control logic.

Serial Encoder

The Serial Encoder accepts the digitized value from the ADC and formatting/data from the Control Logic. A logic transition from Idle to Signal High and then to Signal Low at BUSIN will cause the first bit to be presented to the current switch (Response Loading). A transition to Signal High and back to Signal Low will cause the next bit to be presented to the current switch. This will continue until a transition back to Idle turns off the current switch.

Slew

The slew circuit serves to reduce EMI produced as a result of switching the bus loading current sink element. The slew circuit limits the rise and fall time of current loading the bus by controlling the current sinking element.

Switched Current Source

A "1" data return bit will be signaled by turning on a fixed current source. During signaling time, the 33793 will be using power from H_CAP and not loading the bus for power. The current will be drawn from either BUSIN or BUSOUT or split between them. The split can be in any proportion as long as the total is correct.

The current source is turned off whenever the bus is at Idle level.

Level Detector

The level detector contains comparators to determine if the BUSIN or BUSOUT is at idle, logic high, or logic low. The inputs from BUSIN and BUSOUT are sensed by the device so that if either side is driven by the signaling waveform while the other is not, the signaling will be detected. This circuit also provides a signal to indicate if the signal is being received on the BUSOUT pin. If a "reverse initialization" command is received, it can only be acted upon if the device is not already initialized and if the signal is present on BUSOUT.

Serial Decoder

The Serial Decoder monitors transitions on the BUSIN or BUSOUT. When the 33793 is Idle and supplying power to itself and the external device(s) (via REGOUT), the input to BUSIN will be in the Idle state. A transition from this level to Signal Low (through Signal High) will start the process of decoding a word of data. BUSIN is driven from Signal Low to Signal High for each bit and back to Signal Low to start the next bit. The determination of whether the bit was a one or a zero is made by determining whether it spent more time low (a zero) or high (a one). The end of the word is signaled by a transition at the end of the last bit from Signal High to Idle. The advantage of this method is that it will accept data over a wide range of rates and is not dependent on an accurate clock.

The controller will typically indicate a logic zero by spending 2/3 of the bit period at Signal Low and 1/3 at Signal High. A logic one would be 1/3 of the bit period at Signal Low and 2/3 at Signal High.

Control Logic

The control logic performs the digital operations carried out by this device. Its principle functions include:

- · Decoding input instructions.
- Control the general purpose I/O and LOGICOUT in response to BUSIN or BUSOUT commands.
- Control A/D conversions.
- · Form response word.
- · Capture and store address.
- · Control BUSSW.
- Reset device on power-up.
- Control the general purpose I/O logic configuration.
- Read the general purpose I/O logic values and respond to request for these values.
- Generating a cycle redundancy check (CRC) for the received data and transmitted data in conformance with the DSI Bus Standard.

Additionally, the control logic performs error checking on the received data. If errors are found, no action is taken and no response is made. Errors include:

- CRC received doesn't match CRC of received data.
- Number of received bits is not 12 or 20.

Clock

The clock is a low-stability type with the capacitor integrated onto the die. The signaling system and all internal operations are such that no external precision timing device is needed in the normal operation of this device.

Bus Switch (BUSSW)

The bus switch passes signaling and power to all subsequent devices on the bus. It can block a voltage of either polarity up to the highest idle state level between BUSIN and BUSOUT.

LOGICOUT

LOGICOUT is a logic level output with enhanced high-side drive capability.

Addressing

The 33793 IC supports both runtime programmable and preprogrammed addressing as defined in the DSI Specification. Runtime programmable addressing uses the daisy chain bus connection. Pre-programmed devices may either be connected in daisy chain or in parallel on the bus wires.

Programmable address devices all power up with a device address of \$0 in their address register and their bus switches

open. In the daisy chain, if the first device receives the initialization command device on BUSIN, it will accept the address in the command and close its switch at the end of the command. The next device in the chain will now be able to receive the initialization command on its BUSIN and will accept the next address. This proceeds down the chain until the last device is addressed. The devices can also be initialized by the

reverse initialization command if the signal is applied to BUSOUT.

Pre-programmed devices power up with their preprogrammed address in its address register. It will ignore all Initialization commands unless the address in the command matches its pre-programmed address. In this event the device stores the other information contained in the Initialization command.

OPERATION

A device may be permanently programmed one time with an address using a two-command sequence. The first step is satisfied on the reception of an Initialization command with address set to zero, the PA[3:0] set to the address to be programmed, and the NV bit set. This will cause the address contained in the PA[3:0] bits to be stored in the address register and the bus switch closed. The second step is taken when a Read/Write NVM command is received with the PA[3:0] bits matching the A[3:0] bits and also matching the bits stored in the 33793 address register. This will cause the 33793 to permanently store this address into an internal NVM area.

Messages

The messages follow the format defined in the Distributed Systems Interface Specification rev 1.0 unless otherwise noted.

DSI Bus Commands

This device can recognize and respond to both long-word and short-word commands. A command word summary is shown in Table 1. SW in the "Size" column of the table indicates short-word commands and LW indicates long-word commands. Short-word commands may also be sent in the long-word format. However, when these commands are sent in the longword format, it is recommended that the data byte be sent as \$00 to maintain future compatibility. All commands marked reserved should not be sent to 33793 slaves.

	Comr	nand		Size	Description					Data			
C3	C2	C1	C0	Size	Description	D7	D6	D5	D4	D3	D2	D1	D0
0	0	0	0	LW	Initialization	NV	BS	G1	G0	PA3	PA2	PA1	PA0
0	0	0	1	SW	Request Status	-	-	-	-	-	-	-	-
0	0	1	0	SW	Request Value 0	-	-	-	-	-	-	-	-
0	0	1	1	LW	I/O Control	L3	L2	L1	L0	DR3	DR2	DR1	DR0
0	1	0	0	SW	Request ID Information	-	-	-	-	-	-	-	-
0	1	0	1	SW	Request Value 1	-	-	-	-	-	-	-	-
0	1	1	0	SW	Request Value 2	-	-	-	-	-	-	-	-
0	1	1	1	SW	Clear	-	-	-	-	-	-	-	-
1	0	0	0	SW	Request Value 3	-	-	-	-	-	-	-	-
1	0	0	1	LW	Read/Write NVM	1	1	1	1	PA3	PA2	PA1	PA0
1	0	1	0		Reserved								
1	0	1	1		Reserved								
1	1	0	0	SW	Clear Logic Out	-	-	-	-	-	-	-	-
1	1	0	1	SW	Set Logic Out	-	-	-	-	-	-	-	-
1	1	1	0		Reserved								
1	1	1	1	LW	Reverse Initialization	NV	BS	G1	G0	PA3	PA2	PA1	PA0

Table 1. DSI Bus Commands

Legend

BS = Controls closing of the Bus Switch (1 = close).

DR[3:0] = Direction of I/O. 1 = Output.

G[1:0] = Group assignment (the 33793 does not use these bits). L[3:0] = Level to output on I/O if configured as outputs. PA3[:0] = Bus Address to set the device to.

NV = Allows nonvolatile address programming if set to "1".

LO = Logic Out level.

Long- and Short-Word Responses

The device responds to long-word commands with long-word responses and short-word commands with short-word responses. Responses are sent during the next message

following the command. A long-word response summary is found in Table 2 and a short-word response summary is found in Table 3, page 14.

CMD hex	Command Description								Res	sponse)						
0	Initialization	A3	A2	A1	A0	0	0	0	BF	NV	BS	G1	G0	PA3	PA2	PA1	PA0
1	Request Status	A3	A2	A1	A0	0	0	0	0	NV	U	LO	BS	103	102	IO1	100
2	Request Value 0	A3	A2	A1	A0	0	0	0	0	B7	B6	B5	B4	B3	B2	B1	B0
3	I/O Control	A3	A2	A1	A0	0	0	0	0	L3	L2	L1	L0	DR3	DR2	DR1	DR0
4	Request ID	A3	A2	A1	A0	0	0	0	0	V2	V1	V0	0	0	0	1	1
5	Request Value 1	A3	A2	A1	A0	0	0	0	0	B7	B6	B5	B4	B3	B2	B1	B0
6	Request Value 2	A3	A2	A1	A0	0	0	0	0	B7	B6	B5	B4	B3	B2	B1	B0
7	Clear								No R	espon	se						
8	Request Value 3	A3	A2	A1	A0	0	0	0	0	B7	B6	B5	B4	B3	B2	B1	B0
9	Read/Write NVM	A3	A2	A1	A0	0	0	0	0	1	1	1	1	PA3	PA2	PA1	PA0
А	Reserved																
В	Reserved																
С	Clear Logic Out	A3	A2	A1	A0	0	0	0	0	NV	U	LO	BS	103	102	IO1	100
D	Set Logic Out	A3	A2	A1	A0	0	0	0	0	NV	U	LO	BS	103	102	IO1	100
E	Reserved																
F	Reverse Initialization	A3	A2	A1	A0	0	0	0	BF	NV	BS	G1	G0	PA3	PA2	PA1	PA0

Table 2. Long-Word Response Summary

Legend

A[3:0] = Address bits. The slave address.

B[7:0] = 8-bit A/D value.

BF = Bus Fault

BS = Status of the Bus Switch (1 = close).

DR[3:0] = I/O direction bits (1 = Output).

G[1:0] = Group assignment (the 33793 does not use these bits).

IO[3:0] = Logic level of I/O.

L[3:0] = Level to output on I/O if configured as outputs.

LO = Logic Out level at the Logic Out pin.

NV = Allows nonvolatile address programming if set to "1".

PA[3:0] = Bus Address to set the device to.

U = Undervoltage Flag.

V[2:0] = Version number.

Command	Command				Resp	onse								
0000	Initialization	Not Valid												
0001	Request Status	NV	U	LO	BS	IO3	102	IO1	100					
0010	Request Value 0	B7	B6	B5	B4	B3	B2	B1	B0					
0011	I/O Control				Not	Valid								
0100	Request ID Information	V2 V1 V0 0 0 0 1												
0101	Request Value 1	B7	B6	B5	B4	B3	B2	B1	B0					
0110	Request Value 2	B7	B6	B1	B0									
0111	Clear				No Re	sponse								
1000	Request Value 3					B2	B1	B0						
1001	Read/Write NVM				Not	Valid								
1010	Reserved													
1011	Reserved													
1100	Clear Logic Out	NV	U	LO	BS	IO3	102	IO1	100					
1101	Set Logic Out	NV	U	LO	BS	IO3	102	IO1	100					
1110	Reserved													
1111	Reverse Initialization		Not Valid											

 Table 3. Short-Word Response Summary

Legend

B[7:0] = 8-bit A/D value.

BS = Status of the Bus Switch (1 = close).

LO = Logic Out level at the Logic Out pin.

IO[3:0] = Logic level of I/O.

NV = Allows nonvolatile address programming if set to "1".

PA[3:0] = Bus Address to set the device to.

U = Undervoltage Flag. V[2:0] = Version number.

33793 14

DSI COMMANDS AND RESPONSES

Initialization Command

The Initialization command must be sent to the 33793 before it may commence communications over the bus. The command may be used three ways. The first is to initialize a programmable address device. The second is the first step in assigning a pre-programmed address. The third is to initialize a pre-programmed device.

For the first case this command is sent to address zero with the NV bit set to zero. The command will be received by the next daisy chain device with its bus switch open. Reception of this command will assign the device address and group number.

For the second case the Initialization command is sent the same as the first except that the NV bit is set to one. Reception

of the command will assign the device address and group number. A Read/Write NVM command then may be sent to complete the setting of a pre-programmed address.

A pre-programmed device must be initialized by putting its address in both PA3:PA0 and A3:A0 fields.

Once a device has received an initialization command, it will ignore further initialization commands unless it has received a Clear command or undergone a power-up reset.

If BS = 1 and no faults are detected, initialization will cause the bus switch to close.

The command format is found in Table 4.

Table 4. Ir	nitialization	Command	Format
	inclui zacion	oommania	i oimat

	Data					Address				Command				CRC					
NV	BS	G1	G0	PA3	PA2	PA1	PA0	A3	A2	A1	A0	0	0	0	0	Х3	X2	X1	X0

Legend

A[3:0] = Address bits. The slave address. BS = Bus Switch Position (1 = closed). G[1:0] = Group bits (unused). NV = Nonvolatile Memory Write. The value of the NV bit in the slave. PA[3:0] = Bus Address to set the device to.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the master.

Initialization Response

device. The response is shown in Table 5. Because this is a long-word only command, the short-word response is invalid.

This response message is sent during the next message following a valid Initialization command to the addressed

Table 5. Initialization Response Format

	High Byte										Low	Byte					CI	RC	
A3	A2	A1	A0	0	0	0	BF	NV	BS	G1	G0	PA3	PA2	PA1	PA0	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The slave address.

BF = Bus Fault. Bus out short to battery detected.

BS = Bus Switch Position (1 = closed).

G[1:0] = Group bits (unused).

Request Status Command

This command will cause the addressed device to return the status of the NV, U, and BS bits and the logic levels of the I/O and LOGICOUT. The command format is found in Table 6.

NV = Nonvolatile Memory Write. The value of the NV bit in the slave. PA[3:0] = Bus Address to set the device to.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the slave.

Table 6. Request Status Command Format

	Data								Add	ress			Com	mand			CF	RC	
-	-	-	-	Ι	Ι	-	Ι	A3	A2	A1	A0	0	0	0	1	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The address of the selected device. An address value of "0000" is ignored by all devices.

Request Status Response

This response message is sent during the next message following a valid Request Status command to the addressed device. The response format is found in Table 7. The high byte is omitted during the short-word response. No response is generated if the command address field was \$0.

Table 7. Request Status Response Format

	High Byte										Low By	/te					CI	ર૦	
A3	A2	A1	A0	0	0	0	0	NV	U	LO	BS	103	102	IO1	100	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The slave address.

BS = Bus Switch Position (1 = closed).

LO = Logic out driven level.

IO[3:0] = Values at logic I/Os.

Request Value n Command

This command will cause the analog level at one of the four I/O lines to be measured and returned on the following

NV = Nonvolatile Memory Write. The value of the NV bit in the slave. U = Undervoltage indicated true by a "1".

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the slave.

command. The command format is found in Table 8. The analog input measured is defined in Table 9.

Table 8. Request Value n Command Format

	Data								Add	ress			Comr	nand			C	RC	
-	-	-	-	_	Ι	-		A3	A2	A1	A0	C3	C2	C1	C0	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The address of the selected device. An address value of "0000" is ignored by all devices.

A/D Input

I/O0

I/01

I/O2

I/O3

Table 9. Analog Input Selection

Command

0010

0101

0110

1000

C[3:0] = Command number.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the master.

Request Values Response

This response is an 8-bit value representing the value measured by the ADC. The selection of "n" is a function of the command. This is shown in Table 10.

The read will be completed during the idle period and will represent the voltage at the end of the command. If an undervoltage condition exists at any time during the command or the measurement has not completed properly, a value of "00000000" will be returned. This is a reserved value to indicate a problem with the measurement. The minimum valid level reported will be "00000001". No response is generated if the command address field was \$0.

Table 10. Request Values Response Format

			High E	Byte							Lo	w Byte					CF	C	
A3	A2	A1	A0	0	0	0	0	D7	D6	D5	D4	D3	D2	D1	D0	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The address of the selected device. An address value of "0000" is ignored by all devices. D[7:0] = Measured value (MSB = D7).

X[3:0] = Cyclic Redundancy Check (CRC).

I/O Control Command

This register controls the I/O ports. When the "DR" bits are set, the corresponding I/O is enabled as an output. The "L" bit

settings control the level of the corresponding I/O if it is enabled as an output. The format of this command is shown in Table 11.

Table 11. I/O	Control	Command	Format
---------------	---------	---------	--------

				Data					Add	ress			Com	mand			C	ર૦	
L3	L2	L1	L0	DR3	DR2	DR1	DR0	A3	A2	A1	A0	0	0	1	1	X3	X2	X1	X0

Legend

A[3:0] = Address bits.

DR[3:0] = I/O direction bits. 1 = Output. All bits are set to "0" by reset/clear.

L[3:0] = Level to output on I/O if configured as output. All bits are set to "0" by reset/clear

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the master.

I/O Control Response

The response indicates which I/O has been configured as outputs and their current values.

The values returned will be the values programmed. The values at the pins will not be the ones that were programmed if the pin has been forced to the opposite state. The response format is shown in Table 12. No response is generated if the command address field was \$0.

	High Byte										Lo	w Byte					CF	RC	
A3	A2	A1	A0	0	0	0	0	L3	L2	L1	L0	DR3	DR2	DR1	DR0	X3	X2	X1	X0

Legend

A[3:0] = Address bits.

DR[3:0] = I/O enabled as outputs (1 = enabled as output).

L[3:0] = Programmed values.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the slave.

Request ID Command

This command will cause the device ID information to be read from internal storage and returned to the master during the

response to the next message. The command format is found in Table 13.

Table 13. Request ID Command Format

				Data					Add	ress			Com	mand			CF	RC	
-	-	-	-	_	-	-	-	A3	A2	A1	A0	0	1	0	0	X3	X2	X1	X0

Legend

 $\label{eq:A3:0} \mbox{A[3:0]} = \mbox{Address bits. The address of the selected device.} \\ \mbox{An address value of "0000" is ignored by all devices.} \\$

Request ID Response

This response message is sent during the next message following a valid long-word Request ID command to the

addressed device. The response format is found in Table 14. The high byte is omitted during the short-word response. No response is generated if the command address field was \$0.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by

Table 14. Request ID Response Format

	Add	ress			Sta	tus					Data				_		C	RC	
A3	A2	A1	A0	0	0	0	0	V2	V1	V0	0	0	0	1	1	X3	X2	X1	X0

the slave.

Legend

 $\label{eq:2.1} \begin{array}{l} \mathsf{A}[3:0] = \mathsf{A}\mathsf{d}\mathsf{d}\mathsf{ress} \ \mathsf{bits.} \ \mathsf{The slave address.} \\ \mathsf{V}[2:0] = \mathsf{D}\mathsf{evice} \ \mathsf{version} \ \mathsf{number.} \ \mathsf{The silicon} \ \mathsf{version} \ \mathsf{number} \ \mathsf{of} \\ \mathsf{the device.} \ \mathsf{For this} \ \mathsf{d}\mathsf{evice} \ \mathsf{the device type} \ \mathsf{is} \ \mathsf{00011} \ \mathsf{as} \ \mathsf{indicated} \\ \mathsf{by the lowest bits.} \end{array}$

Clear Command

This command will open the bus switch and reset all registers to the reset state. The command format is found in Table 15. No response is generated for the Clear command.

Table 15. Clear Command Format

	Data								Add	ress			Com	mand			CF	RC	
-	-	-	Ι	-	-	-	Ι	A3	A2	A1	A0	0	1	1	1	Х3	X2	X1	X0

Legend

A[3:0] = Address bits. The address of the selected device. An address value of "0000" clears all devices.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the master.

Read/Write NVM Command

If the NV bit has been set by a previous Initialization command and the NVM has not been programmed previously, this command will permanently program the device's one-time programmable address and return the programmed value during the next message time. Once programmed, this nonvolatile address is used to set the device address register on the next and all subsequent power-ups. If the device is not blank, this command will return the programmed value during the next message time. Programming the NVM address to \$0 is allowed. This ensures that the device always acts as a dynamically addressable device and would be immune to any inadvertent future NVM programming sequences.

Reads and writes are long-word commands only. The command format is found in Table 16.

Table 16. Read/Write NVM Command Format

	Data								Add	ress			Com	mand			CF	RC		
1	1	1	1	1	PA3	PA2	PA1	PA0	A3	A2	A1	A0	1	0	0	1	X3	X2	X1	X0

Legend

A[3:0] = Address bits. These bits are the address of the device previously sent with the Initialization command. They must match the address in the PA[3:0] field and the address stored in the device address register.

PA[3:0] = Program Address bits. These bits are the address that is to be programmed into the slave.

Read/Write NVM Response

This response message is sent during the next message following a valid Read/Write NVM command to the addressed

device. The response format is found in Table 17. The high byte is omitted during the short-word response. No response is generated if the command address field was \$0.

Table 17. Read/Write NVM Response Format

	High Byte										I	ow Byt	e				CF	ર૦	
A3	A2	A1	A0	0	0	0	0	1	1	1	1	PA3	PA2	PA1	PA0	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The slave address.

PA[3:0] = Programmed Address bits. The address that was programmed into the NVM address bits of the slave.

Clear Logic Out Command

The Clear Logic Out command sets the Logic Out pin to a logic low. The compliment to this command is the Set Logic Out.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the slave.

The Logic Out is also cleared at power-up or following a Clear command. The format of the Clear Logic Out command is shown in Table 18.

Table 18. Clear Logic Out Command Format

	Data								Add	ress			Com	mand			CF	ર૦	
-	-	Ι	Ι	-	-	-		A3	A2	A1	A0	1	1	0	0	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The address of the selected device.

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the master.

Clear Logic Out Response

This response message is sent during the next message following a valid Clear Logic Out command to the addressed

device. The response is shown in Table 19. No response is generated if the command address field was \$0.

Table 19. Clear Logic Out Response Format

				High I	Byte							Low By	/te					CI	ર૦	
A	3	A2	A1	A0	0	0	0	0	NV	U	LO	BS	IO3	102	IO1	100	Х3	X2	X1	X0

Legend

A[3:0] = Address bits. The slave address.

BS = Bus Switch Position (1=closed).

LO = Logic out driven level.

IO[3:0] = Values at logic I/Os.

Set Logic Out Command

The Set Logic Out command sets the Logic Out pin to a logic high. The compliment to this command is the Clear Logic Out. The Logic Out is cleared at power-up or following a Clear NV = Nonvolatile Memory Write. The value of the NV bit in the slave. U = Undervoltage indicated true by a "1".

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the slave.

command. The format of the Clear Logic Out command is shown in Table 20.

Table 20. Set Logic Out Command Format

	Data								Add	ress			Com	mand			C	RC	
-	-	-	-	-	-	-	-	A3	A2	A1	A0	1	1	0	1	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The address of the selected device.

Set Logic Out Response

This response message is sent during the next message following a valid Set Logic Out command to the addressed

device. The response is shown in Table 21. No response is generated if the command address field was \$0.

Table 21	. Set Logic	Out Response	Format
----------	-------------	---------------------	--------

High Byte										Low By	/te					CI	ર૦		
A3	A2	A1	A0	0	0	0	0	NV	U	LO	BS	103	102	IO1	100	X3	X2	X1	X0

Legend

A[3:0] - Address bits. The slave address. BS = Bus Switch Position (1=closed) IO[3:0] = Values at logic I/Os. LO = Logic out driven level. NV = Nonvolatile Memory Write. The value of the NV bit in the slave. U = Undervoltage indicated true by a "1".

X[3:0] = Cyclic Redundancy Check (CRC). The CRC as calculated by the slave.

Reverse Initialization

The Reverse Initialization is similar to the Initialization command and will only work under the condition that it has not already been initialized. The command may be used three ways. The first is to initialize a programmable address device. The second is the first step in assigning a pre-programmed address. The third is to initialize a pre-programmed device.

For the first case this command is sent to address zero with the NV bit set to zero. The command will be received by the next daisy chain device with its bus switch open. Reception of this command will assign the device address and the group number. Reception of this command will also cause the bus switch to close if BS = 1 and no fault is detected. For the second case the Initialization command is sent the same as the first except that the NV bit is set to one. Reception of the command will assign the device address and the group number and cause the bus switch to close if BS = 1 and there are no faults. A Read/Write NVM command then may be sent to complete the setting of a pre-programmed address.

A pre-programmed device must be initialized by putting its address in both PA3:PA0 and A3:A0 fields.

Once a device has received a reverse initialization command, it will ignore further reverse initialization commands or initialization commands unless it has received a Clear command or undergone a power-up reset.

The command format is found in Table 22.

Table 22.	Reverse	Initialization	Command	Format
-----------	---------	----------------	---------	--------

Data									Add	ress			Com	mand			CF	RC	
NV	BS	G1	G0	PA3	PA2	PA1	PA0	A3	A2	A1	A0	1	1	1	1	X3	X2	X1	X0

Legend

A[3:0] = Address bits. These bits are the slave address. For programmable devices these bits are all set to zero. For preprogrammed devices these bits contain the pre-programmed address and must match the PA[3:0] bits.

G[1:0] = Group bits. These bits are the group number for the slave. These bits are not used by this device and should be set to "0".

PA[3:0] = Program Address bits. These bits are the address that is to be stored into the slave's address register.

NV = Nonvolatile Memory Write. When set to a one, this bit allows a subsequent NVM command to store a nonvolatile address. When set to a zero, NVM programming is disallowed. Once a permanent address has been stored in the device, setting the NV bit to a one has no effect.

Reverse Initialization Response

This response message is sent during the next message following a valid Reverse Initialization command to the addressed device. The response is shown in Table 23. Since this is a long-word only command, the short-word response is invalid. No response is generated if the command address field was \$0.

Table 23. Reverse Initialization Response Format

	High Byte										Low B	yte					С	RC	
A3	A2	A1	A0	0	0	0	BF	NV	BS	G1	G0	PA3	PA2	PA1	PA0	X3	X2	X1	X0

Legend

A[3:0] = Address bits. The slave address.

BF = Bus Fault. BUSIN short to battery detected.

BS = Controls closing of the Bus Switch (1=close).

G[1:0] = Group bits. Not used on this part, will be set to "0". The group number programmed into the slave.

NV = Nonvolatile Memory Write. The value of the NV bit in the slave. PA[3:0] = Bus Address to set the device to.

PACKAGE DIMENSIONS

NOTES

Information in this document is provided solely to enable system and software implementers to use Motorola products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters which may be provided in Motorola data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.

MOTOROLA and the Stylized M Logo are registered in the US Patent and Trademark Office. All other product or service names are the property of their respective owners.

© Motorola, Inc. 2003

HOW TO REACH US:

USA/EUROPE/LOCATIONS NOT LISTED:

Motorola Literature Distribution P.O. Box 5405, Denver, Colorado 80217 1-800-521-6274 or 480-768-2130 JAPAN: Motorola Japan Ltd.; SPS, Technical Information Center 3-20-1 Minami-Azabu. Minato-ku, Tokyo 106-8573, Japan 81-3-3440-3569

ASIA/PACIFIC: Motorola Semiconductors H.K. Ltd.; Silicon Harbour Centre 2 Dai King Street, Tai Po Industrial Estate, Tai Po, N.T., Hong Kong 852-26668334

HOME PAGE: http://motorola.com/semiconductors

SUNSTAR 商斯达实业集团是集研发、生产、工程、销售、代理经销、技术咨询、信息服务等为一体的高科技企业,是专业高科技电子产品生产厂家,是具有10多年历史的专业电子元器件供应商,是中国最早和最大的仓储式连锁规模经营大型综合电子零部件代理分销商之一,是一家专业代理和分銷世界各大品牌IC芯片和電子元器件的连锁经营综合性国际公司,专业经营进口、国产名厂名牌电子元件,型号、种类齐全。在香港、北京、深圳、上海、西安、成都等全国主要电子市场设有直属分公司和产品展示展销窗口门市部专卖店及代理分销商,已在全国范围内建成强大统一的供货和代理分销网络。我们专业代理经销、开发生产电子元器件、集成电路、传感器、微波光电元器件、工控机/DOC/DOM 电子盘、专用电路、单片机开发、MCU/DSP/ARM/FPGA软件硬件、二极管、三极管、模块等,是您可靠的一站式现货配套供应商、方案提供商、部件功能模块开发配套商。商斯达实业公司拥有庞大的资料库,有数位毕业于著名高校——有中国电子工业摇篮之称的西安电子科技大学(西军电)并长期从事国防尖端科技研究的高级工程师为您精挑细选、量身订做各种高科技电子元器件,并解决各种技术问题。

更多产品请看本公司产品专用销售网站:

商斯达中国传感器科技信息网: http://www.sensor-ic.com/

商斯达工控安防网: <u>http://www.pc-ps.net/</u>

商斯达电子元器件网: <u>http://www.sunstare.com/</u>

商斯达微波光电产品网:HTTP://www.rfoe.net/

商斯达消费电子产品网://www.icasic.com/

商斯达实业科技产品网://www.sunstars.cn/

传感器销售热线:

地址: 深圳市福田区福华路福庆街鸿图大厦 1602 室

电话: 0755-83370250 83376489 83376549 83607652 83370251 82500323

传真: 0755-83376182 (0) 13902971329 MSN: <u>SUNS8888@hotmail.com</u>

邮编: 518033 E-mail:<u>szss20@163.com</u> QQ: 195847376

深圳赛格展销部: 深圳华强北路赛格电子市场 2583 号 电话: 0755-83665529 25059422 技术支持: 0755-83394033 13501568376

欢迎索取免费详细资料、设计指南和光盘;产品凡多,未能尽录,欢迎来电查询。 北京分公司:北京海淀区知春路132号中发电子大厦3097号

TEL: 010-81159046 82615020 13501189838 FAX: 010-62543996

- 上海分公司:上海市北京东路 668 号上海賽格电子市场 2B35 号
 - TEL: 021-28311762 56703037 13701955389 FAX: 021-56703037

西安分公司:西安高新开发区 20 所(中国电子科技集团导航技术研究所)

西安劳动南路 88 号电子商城二楼 D23 号

TEL: 029-81022619 13072977981 FAX:029-88789382